

XStore/J

User Guide

XAVAX, Inc.

Copyright © 2006 Xavax Incorporated, All Rights Reserved

Permission is granted to make copies of this document or print copies from the electronic dis-
tribution provided this copyright notice is included and the document is not modified. The latest
electronic distribution of this document can be obtained at the following URL.

http://www.xavax.com/xstore/

XStore/J Programming Guide

i

Contents

Preface

XStore Goals

. v

Who Should Use XStore?

.vi

Licensing

. .vi

Required Software

 .vi

Web Support

. vii

Acknowledgements

. vii

CHAPTER 1

Introduction to XStore/J Persistence Concepts

Object Identity

. 1-2

Proxy Objects

 . 1-2

Object Cache

 . 1-4

Interface versus Implementation

. 1-4

Inheritance

 . 1-4

Polymorphism

. 1-5

Associations

 . 1-6

Mapping Metadata

 . 1-7

Persistence Context

 1-7

Persistence Manager

 1-7

Persistent Objects

. 1-8

Transient Objects

 . 1-8

Persistence Domains

 1-8

Sequencers

. 1-9

Finding Objects

. 1-9

Deleting Objects

 . 1-10

CHAPTER 2

Class Preparation

Interface Extraction

. 2-1

Modification Tracking

. 2-1

Improving Performance

. 2-5

Implementing PObject

. 2-5

Common Mistakes

 . 2-6

ii

XStore/J Programming Guide

CHAPTER 3

Generating Proxy and Factory Classes

Using the Proxy Generator

 3-1

Automating Proxy Generation Using Ant

. . . . 3-2

Proxy Implementation

 3-3

CHAPTER 4

Generating Metadata

Using the Metadata Generator

 4-1

Assumptions

 . 4-2

Editing the Metadata

 4-2

Incremental Metadata Generation

. 4-2

CHAPTER 5

Programming with the XStore/J Framework

Initialization

 . 5-1

Obtaining a Persistence Context

. 5-2

Setting a Default Database

 5-2

Creating Objects

 . 5-2

Locating Persistent Objects

. 5-3

Deleting Persistent Objects

. 5-3

Using Multiple Threads

 5-4

Releasing Resources

 5-4

CHAPTER 6

Understanding XStore Mapping Metadata

Overview

 . 6-1

PersistenceManager

 6-1

ClassMap

. 6-2

AssociationMap

. 6-3

AttributeMap

 . 6-3

TableMap

. 6-4

ColumnMap

. 6-4

DatabaseMap

 . 6-4

DatabaseTables

. 6-5

Sequences

. 6-5

SQLTypes

 . 6-5

Editing Metadata

 . 6-6

XStore/J Programming Guide

iii

CHAPTER 99

Planned Enhancements

Cache Performance

 99-1

Smart Containers

 . 99-1

Association Table Reuse

. 99-2

Automatic Optimistic Locking

 99-2

Object Migration

 . 99-2

Schema Evolution

. 99-3

Annotations

. 99-4

EJB 3.0

 . 99-4

iv

XStore/J Programming Guide

XStore/J Programming Guide

v

Preface

XStore Goals

XStore/J is the Java variant of the XStore persistence framework. I began developing XStore
with the goal of achieving the best of two worlds: the programming simplicity of an object-
oriented database with the availability of a relational database. A programmer employing the
object-oriented programming paradigm would rather deal with classes, fields, and associations
rather than tables, columns, and relationships, and an object-oriented database supports this
view of persistence. Unfortunately, object-oriented database products have not met with much
acceptance in the mainstream IT community where relational databases are pervasive.

XStore attempts to bridge this gap by implementing the client-side features of an object-ori-
ented database while using a relational database as a

storage engine

. From the programmer’s
perspective, XStore operates like an object-oriented database. Persistent objects are created,
manipulated, and deleted much like transient objects with very little attention to the details of
object persistence. Persistent objects automatically become part of the current transaction
when they are created or loaded and any changes are automatically persisted when the trans-
action is committed.

Every attempt has been made to implement the relational side of XStore in a manner that
would be palatable to most relational database administrators (DBAs). Each class is mapped
to one or more tables and each field is mapped to a column of the most appropriate database
type. This is preferable to the alternative of saving the entire object as a binary large object
(BLOB) since existing relational tools can be used to examine objects in the database. Associ-

vi

XStore/J Programming Guide

ations are modelled as relationships using foreign keys, in the case of 1:1 associations, and
separate cross-reference tables in the case of 1:n associations. The 64-bit object identifier
(OID) is mapped to a column, usually of type BigInt or Number(20), and is always used as the
primary key of the table. The OID is best presented to DBAs as a

surrogate

 primary key cre-
ated by a sequence generator, as DBAs tend to favor surrogate keys.

Who Should Use XStore?

XStore differs from other persistence frameworks such as Hibernate or TOPLink in that it does
not attempt to be a general purpose framework. XStore strives to achieve one goal: to emulate
an object-oriented database in a relational world. Toward that purpose, XStore requires the
user to accept common object-oriented database concepts such as a global object identifier
(OID). If your application is required to support a legacy database schema or the schema is
otherwise constrained in such a way that will not allow using the OID as the primary key, then
XStore is not appropriate for your application. If your application’s primary purpose is reporting
and does not involve manipulating objects, then a relational view of the data is more appropri-
ate and the overhead of XStore or any object-oriented database would result in lesser perfor-
mance. However, if your goal is to use the object-oriented paradigm with minimal attention to
the details of persistence, while living in a relational world, then I believe XStore is the best tool
for the job.

Licensing

The use of XStore is governed by the Xavax Open Software License. To summarize, you can
use XStore for any purpose, including commercial applications, without paying any license
fees or royalties. You can distribute XStore provided you acknowledge the copyright. You can
modify XStore and distribute modified copies provided that the modified copies are clearly
marked as having been modified and the recipient is informed of how to obtain the original
source. If you modify XStore, you are encouraged to submit those changes to the author who
will review the changes and consider them for inclusion in future versions of XStore.

Required Software

XStore has been tested using JDK 1.4.2 and 1.5. It requires a JDBC driver that implements
prepared statements, which is almost any JDBC driver available. XStore uses Apache Com-
mons Logging so that library must be in the class path. XStore can operate in a container such
as Weblogic or Tomcat and in that case it will use the standard facility for looking up data
sources; however, a container is not required. When running standalone, XStore provides a
set of utility classes which implement the lookup mechanism and the DataSource interface.

XStore/J Programming Guide

vii

Web Support

The latest information about XStore including documentation of the XStore API is available at
the XStore web site.

http://www.xavax.com/xstore/

The author can be contacted as follows.

mailto:alvitar@xavax.com
phone: +1.404.468.0626
http://www.xavax.com

Acknowledgements

I began implementing my first persistence framework in 1992. Faced with the prospect of writ-
ing CRUD methods for 52 classes, I thought “there has to be a better way” and began search-
ing for a way to simplify the persistence of objects. I gleaned many good ideas from the
writings of Scott Ambler (www.ambysoft.com) and his work had a significant influence on that
first design and on XStore. I was familiar with the concept of metadata, such as provided in
Objective/C, but this was the first time I had considered using metadata to facilitate the serial-
ization or persistence of objects.

Since that time I have implemented five persistence frameworks (1 in C, 1 in C

++

, 3 in Java).
One might contend that makes me an expert on how not to design a persistence framework.
Along the way I had the opportunity to work with a few commercial object-oriented databases
and XStore borrows liberally from the concepts learned during the journey. Especially worth
noting is Versant. XStore’s LOID and object cache directory are similar to the LOID and Com-
mon Object Descriptor (COD) Table in Versant.

I would like to thank the good people of bioMerieux Vitek (St. Louis), IBM Mapping Applica-
tions Development (Kingston, NY), Idapta (Atlanta), and Scientific Technologies Corporation
(Atlanta) for supporting my work on previous frameworks. I want to thank a former manager,
Dr. Dibyendu Baksi, for encouraging and supporting my work and being a sounding board for
my ideas. Last but certainly not least, I thank my family for supporting me and tolerating my
almost constant use of the computer during my copious spare time.

Phillip L. Harbison, CTO
Xavax, Inc.

XStore was developed on an Apple Powerbook G4 using Eclipse and GNU Emacs. XStore
documentation was prepared using Adobe Framemaker and Javadoc.

viii

XStore/J Programming Guide

XStore/J Programming Guide

1-1

CHAPTER 1

Introduction to XStore/J
Persistence Concepts

XStore is a framework for persisting objects in a database. From a programmer’s perspective,
XStore operates much like an object-oriented database (OODBMS); however, the persistent
objects are transparently mapped to tables and columns and stored in a relational database
(RDBMS). XStore/J (XStore for Java) supports any relational database that provides a JDBC
driver supporting prepared statements.

Persistent objects in XStore are created and behave much the same as conventional transient
objects. The changes necessary to make a class persistent are minimal. Unlike transient
objects, persistent objects do not cease to exist when a program terminates; therefore, persis-
tent objects must be deleted explicitly.

Operations on persistent objects occur within the context of a transaction. During a transac-
tion, persistent objects are created or loaded into the object cache where they can be modified
or deleted. If a transaction is committed, any changes made in the object cache are committed
to the database. Objects created in the object cache are persistent after a commit. If a trans-
action is rolled back, modified objects are removed from the cache and will be reloaded auto-
matically as they are used. Objects created in the object cache cease to exist after a rollback.

Persisted objects are located and loaded into memory in one of two ways. Finder methods are
provided which locate and load objects which match a set of criteria provided by the program-
mer similar to an SQL where clause. Persistent objects associated with objects already in
memory are automatically loaded when the first attempt is made to reference the object
through the association.

Introduction to XStore/J Persistence Concepts

1-2

XStore/J Programming Guide

Object Identity

Transient objects have an identity which is usually the address of the object in memory; how-
ever, this identity ceases to exist when the program terminates. In XStore, persistent objects
also have a permanent identity known as a Logical Object Identifier (LOID). As shown in
Figure 1, a LOID is composed of a 16-bit database identifier, a 16-bit class identifier, and a 64-
bit object identifier (OID). The OID is generated automatically by XStore and is unique across
all classes and databases in an XStore environment. A LOID contains all of the information
needed by XStore to locate a persistent object and is capable of addressing 65,536 data-
bases, 65,536 classes, and 18 quintillion

1 objects. An XStore installation creating one billion
objects per second would require over 500 years to exhaust the set of possible OIDs.

FIGURE 1. Logical Object Identifier

Proxy Objects
A proxy is a surrogate or placeholder for another object. XStore/J uses proxy objects to control
access to an underlying implementation object residing in the object cache and to implement
demand loading. When a program locates a persisted object using a query, the object returned
to the program is actually a proxy for the underlying implementation object which may not yet

1. 18 quintillion objects is equal to 18 billion, billion objects.

Database ID Class ID Object ID

1 of 65536
Classes1 of 65536

Databases

Sprocket

1 of 1.8e19
Objects

XStore/J Programming Guide 1-3

be loaded into the object cache. When the program attempts to use the proxy, the underlying
object is loaded automatically.

The proxy implements the same interface as the underlying object; therefore, it can be used in
any context where the underlying object could be used. For example, if we have a class called
WidgetProxy which is a class of proxies for objects which implement the Widget interface, then
a WidgetProxy can be used anywhere a Widget could be used.

It is important that programmers only create proxy objects rather than implementation objects
since the proxy is XStore’s means for controlling a persistent object. To avoid the mistake of
creating an implementation object, it is a good practice to always use factory classes to create
persistent objects. XStore/J provides a tool that automatically generates proxy and factory
classes containing constructors and create methods with the same set of parameters as the
constructors for the implementation class.

FIGURE 2. XStore Proxy Mechanism and Object Cache Directory

LOID Class TargetProxy

01:05:3524

01:03:8956

01:06:4753

null

GadgetProxy

WidgetProxy

SprocketProxy

GadgetImpl

SprocketImpl

Gadget
Metadata

Widget
Metadata

Sprocket
Metadata

Object Cache Directory

Introduction to XStore/J Persistence Concepts

1-4 XStore/J Programming Guide

Object Cache
All active persistent objects reside in an object cache managed automatically by XStore. As
shown in Figure 2, the object cache directory includes the LOID of the object, a reference to
the proxy, a reference to the class metadata for the object, and a reference to the object which
will be null until the object is loaded. There are also additional flags not shown which are used
by XStore to track the state of the object. There are several advantages to using an object
cache. The programmer does not have to be concerned with which objects are in memory
since XStore manages the cache and loads objects on demand. If there are no applications
which concurrently modify the database, the cache can improve performance of the applica-
tion by keeping objects in memory after a transaction is committed. All information pertaining
to the persistence of an object, such as the LOID, is stored in the object cache directory rather
than in the object itself. This makes it possible to persist any object without changing the
object.

Interface versus Implementation
For the proxy mechanism to work, the programmer must define interfaces and classes that
implement the interfaces. To use our previous example, the developer might take an existing,
non-persistent class such as Widget and rename it WidgetImpl (for Widget Implementation),
then extract the interface which would be called Widget. XStore provides a tool to assist in
interface extraction. Some IDEs also provide interface extraction tools.

Inheritance
Like any OODBMS, XStore supports inheritance and offers a range of solutions for persisting
specialized classes. In the fully normalized form, a table would be created to store the proper-
ties of the base class and additional tables would be created to store the properties unique to
each concrete class. In the denormalized form, a table would be created for each concrete
class and would store all properties of that class including properties of any base classes.
Figure 3 illustrates the two persistence strategies for an example application with a Vehicle
base class and concrete classes for Airplane and Automobile.

The persistence strategy of a class is independent of the persistence strategy for all other
classes. In this example, the developer could choose the fully normalized strategy for Automo-
bile and the denormalized strategy for Airplane. There is one major disadvantage to using the
denormalized strategy. If objects of any class derived from Vehicle such as Airplane are not
represented in the common Vehicle table, then a search of the Vehicle table will not consider
many possible matches such as airplanes that are vehicles. This limits the usefulness of poly-
morphism in an application. The disadvantage of the normalized strategy is it requires one or
more joins to retrieve an object. XStore automatically performs the joins necessary to retrieve

XStore/J Programming Guide 1-5

entire objects, thereby avoiding the “object slicing” problem that often plagues many ad hoc
persistence solutions.

An inheritance hierarchy often has multiple levels and XStore supports this. To expand on our
previous example, Automobile could be converted to an abstract class called LandVehicle with
concrete classes such as Automobile, Truck, and Tractor. There is no upper limit on the num-
ber of joins XStore will perform to accommodate a multi-level inheritance hierarchy; however,
the number should be limited to minimize the performance impact. The programmer also has
the flexibility of choosing to normalize at one inheritance level and denormalize at another
level. In this example, there could be a shared Vehicle table, but Automobile, Truck, and Tractor
could duplicate any properties common to any LandVehicle.

FIGURE 3. Persistence Strategies for Inheritance

Polymorphism
XStore’s demand loading and finder mechanisms support polymorphism. When searching for
objects, the programmer specifies a class X and a set of criteria involving properties of X. If X
is a base class for other persistent classes which use the normalized persistence strategy,
then the find results may include instances of the derived classes. If a persistent object has an
association to an object of class X, the object can belong to any class derived from X. When
the associated object is loaded, XStore examines the class ID contained within the LOID and
constructs a proxy of the appropriate type.

Introduction to XStore/J Persistence Concepts

1-6 XStore/J Programming Guide

Associations
XStore supports 1:1 and 1:n associations to other persistent objects. When a persistent object
is in memory, it contains a reference to the proxy for the associated object, or, in the case of a
1:n association, a collection of references to proxies. When the persistent object is stored in
the database, the LOID of the associated object is stored along with the object. A separate
table with the source LOID, destination LOID, and sequence number are used to persist 1:n
associations. The sequence number is needed to make each row unique but also allows
XStore to preserve order in collections of associations. Figure 4 illustrates how 1:1 and 1:n
associations are persisted in a database.

FIGURE 4. Persistence of 1:1 and 1:n Associations

Any class implementing the Collection interface can be used to store the proxies contained in
a 1:n association. XStore examines the type of the class member used to store the collection
to determine the appropriate container class. If the member is already initialized, XStore will
reuse the container after calling the container’s clear method to remove preexisting objects.

Implementations of the Map interface cannot be used directly to store a 1:n association since
the object loader has no means of determining the key required by the put method; however,
XStore provides a convenient solution. The CollectionMap interface extends Collection adding
the Map methods not included in Collection (get, put, containsKey, makeKey, and removeKey).
AbstractCollectionMap implements all of these except makeKey and delegates to an underly-
ing map passed to it in the constructor. The programmer need only extend AbstractCollection-
Map and implement the makeKey method to have a persistable map of associations. Here is

XStore/J Programming Guide 1-7

an example of a class that might be used in a real estate application to provide a 1:n associa-
tion of Customer to Property with the ZIP code as the key to an underlying HashMap.
public class CustomerPropertyMap extends AbstractCollectionMap {
public CustomerPropertyMap() {
super(new HashMap());
}
public Object makeKey(Object o) {
return ((Property) o).getZipCode();
}
}

Mapping Metadata
Before a class of objects can be persisted, metadata must be provided which describes how
the properties and associations of an object should be mapped to tables and columns. XStore
provides a metadata generator tool which will examine a list of classes and automatically pro-
duce a list of SQL statements to load the metadata and database schema for persisting each
class. The programmer may edit the metadata to specify field lengths and database types as
well as to assign classes to databases. The metadata generator can operate in incremental
mode in which case any changes made to the metadata by the programmer will be retained as
metadata is generated for new class members and associations.

Persistence Context
All persistence activity occurs within a persistence context. The methods used by a program-
mer to find, create, and delete persistent objects as well as commit or rollback transactions are
provided through the PersistenceContext class. Each persistence context contains a private
object cache; therefore, the persistence activity of one thread can easily be isolated from the
activity of other threads.

Persistence Manager
All persistence activity is coordinated by the persistence manager. The persistence manager
loads the metadata required to map objects to tables and columns in the database, manages
pools of persistence contexts and database connections, and generates new object identifiers.
The PersistenceManager class also provides public methods to initialize and shutdown the
persistence framework and to obtain a persistence context.

Introduction to XStore/J Persistence Concepts

1-8 XStore/J Programming Guide

Persistent Objects
XStore does not require all persistent classes be derived from a persistent object base class;
however, it does require a mechanism known as a dirty flag for tracking which objects have
been modified. The developer of a class may choose to manage the dirty flag directly, in which
case the class must either implement the PObject interface or extend the AbstractPObject
class. In either case, the class should set the dirty flag whenever any persistent property of the
object is modified. The developer may also choose to have the dirty flag managed by the proxy
class. This approach may result in unnecessary database activity since the proxy class must
assume that any method call which might modify the object actually did modify the object. In
some applications the developer can achieve better performance by directly managing the
dirty flag and only setting it if the object was indeed modified.

Transient Objects
In some applications it is desirable to create a transient object and later determine if the object
should be persisted. By default, the factory and proxy classes generated by XStore create per-
sistent objects that immediately become part of the current transaction; however, the factory
and proxy classes also support the creation of transient objects. A transient object is accessed
through a proxy object and resides in the object cache like a persistent object, but is marked
transient and does not become part of the current transaction unless the application later
requests that the object be persisted. Unlike persistent objects, transient objects remain in the
cache after a commit or rollback. The most convenient way to create a transient object is to
use the createTransient method of the factory class generated by XStore.

Persistence Domains
A persistence domain is one or more databases managed by one or more instances of the
persistence manager. An object can be created in any database within a persistence domain
provided the database contains the tables necessary to persist the object. Based on the meta-
data provided, XStore can determine which databases exist within a domain, which tables
exist in each database, and which tables are required to persist a class. An exception is thrown
if an attempt is made to store an object in a database that does not contain the necessary
tables to persist it.

An object can have associations to objects in other databases. The persistence domain
administrator may choose to spread classes across multiple databases to improve perfor-
mance or simplify maintenance. For example, Employee objects could be assigned to data-
base A and have associations to Address objects assigned to database B. XStore always
knows where to find an object and how to load it because the LOID contains the database ID
and class ID.

XStore/J Programming Guide 1-9

Sequencers
Each persistence domain must contain one database which stores the mapping metadata and
sequencers used by XStore. The sequencers are used to generate unique identifiers for each
class, database, and object. Each instance of the persistence manager maintains a connec-
tion to this metadata database which is initially used to load the metadata and later to access
the OID sequencer when creating new persistent objects. The class and database sequencers
are used only by the metadata generator and editor tools.

To improve performance, OID generation is a distributed task. Each persistence manager
accesses the OID sequencer and reserves a block of OIDs. The persistence manager assigns
OIDs from this block until the block is exhausted thereby reducing traffic between the persis-
tence manager and the sequencer. The block size or stride is configurable. A distributed OID
sequencer also improves reliability since any instance of the persistence manager can be shut
down without affecting other instances. A fault-tolerant database can be used to host the OID
sequencer further eliminating single points of failure.

Finding Objects
The PersistenceContext class provides a find method that locates persistent objects matching
some search criteria and returns a collection of proxies for the matching objects. The Criteria
class encapsulates the search criteria. The following example returns a collection of each
Employee with the surname “Jetson”.
Criteria crit = pm.createCriteria(“com.spacely.Employee”);
crit.equal("surname","Jetson");
Collection jetsons = pm.find(crit);

We can also search for objects that match patterns with wild cards. This example will find all
employees with a surname that begins with the letter ‘J’.
Criteria crit = pm.createCriteria(“com.spacely.Employee”);
crit.like("surname","J%");
Collection j = pm.find(crit);

Criteria can be arbitrarily complex. Here is an example that finds all male employees who are
between the ages of 30 and 40 with a first name starting with the letter “T”.
Criteria cr1 = pm.createCriteria(“com.spacely.Employee”);
cr1.equal(“sex”, “M”).between(“age”,30,40).like(“firstName”, “T%”);
Collection employees = pm.find(cr1);

The programmer specifies search criteria in terms of classes, attributes. and associations
rather than tables and columns. When generating the query, XStore maps names from the

Introduction to XStore/J Persistence Concepts

1-10 XStore/J Programming Guide

object domain to the relational database domain. The criteria defined in the preceding exam-
ple might generate the following query.
select FIRST_NAME, LAST_NAME, AGE, SEX, ...
from EMPLOYEE
where SEX = ‘M’ and
 AGE between 30 and 40 and
 FIRST_NAME like ‘T%’;

Deleting Objects
Since persistent objects continue to exist in the database after a program terminates, they
must be explicitly deleted when no longer needed. PersistenceContext provides methods to
delete persistent objects given a LOID, a proxy, or a collection of proxies.

XStore/J Programming Guide 2-1

CHAPTER 2 Class Preparation

Interface Extraction
Before we can persist an object using XStore, we must extract an interface from the class def-
inition. Programmers with EJB or CORBA experience will find this a familiar process. For any
class X, we want to rename it to a name such as XImpl (for ‘X Implementation’), then create an
interface X that declares every method implemented by the original class X. Some develop-
ment environments provide an interface extraction tool; however, such tools may not retain the
informative Javadoc comments every programmer dutifully includes for the benefit of others. It
is preferable that a user not be required to study the implementation to understand the inter-
face. For this reason, you might prefer simply editing a copy of the original class and removing
everything between and including the opening and closing brace of each method, leaving the
method signature along with the Javadoc comments.

Modification Tracking
XStore requires that every implementation object provide a mechanism known as a dirty flag
for tracking which objects have been modified. This can be provided by implementing the
PObject interface, extending the AbstractPObject class, or by creating a proxy that manages
the dirty flag. The PObject interface declares the methods isDirty, clearDirty, setDirty, and
post$load. AbstractPObject implements these methods and provides the boolean _dirty flag.
Whether the user implements PObject or extends AbstractPObject, it is necessary to call the
setDirty method in each method that modifies the object.

Class Preparation

2-2 XStore/J Programming Guide

In the following example, we begin with a simple Person class that is to be persisted.
public class Person {
/*
 * Construct a Person object.
 */
public Person(String firstName, String surname) {
this.firstName = firstName;
this.surname = surname;
}

/*
 * Copy the properties of a Person to this object.
 * @param person the Person to be copied.
 */
public void copy(Person person) {
this.firstName = person.firstName;
this.surname = person.surname;
}

/*
 * Returns the person's first name.
 * @return the person's first name.
 */
public String getFirstName() {
return this.firstName;
}

/*
 * Sets the person's first name.
 * @param name the person's new first name.
 */
public void setFirstName(String name) {
this.firstName = name;
}

/*
 * Returns the person's surname.
 * @return the person's surname.
 */
public String getSurname() {
return this.surname;
}

XStore/J Programming Guide 2-3

/*
 * Sets the person's surname.
 * @param name the person's new surname.
 */
public void setSurname(String name) {
this.surname = name;
}

private String firstName;
private String surname;
}

From this class we extract the Person interface.
public interface Person {
/*
 * Copy the properties of a Person to this object.
 * @param person the Person to be copied.
 */
public void copy(Person person);

/*
 * Returns the person's first name.
 * @return the person's first name.
 */
public String getFirstName();

/*
 * Sets the person's first name.
 * @param name the person's new first name.
 */
public void setFirstName(String name);

/*
 * Returns the person's surname.
 * @return the person's surname.
 */
public String getSurname();

/*
 * Sets the person's surname.
 * @param name the person's new surname.
 */
public void setSurname(String name);
}

Class Preparation

2-4 XStore/J Programming Guide

The original Person class is renamed PersonImpl. The modified class implements the Person
interface we just created and extends AbstractPObject. The setFirstName, setSurname and
copy methods were modified to call setDirty. Note the implementation of copy. Since a Person
is not necessarily a PersonImpl, and is most likely a proxy, we cannot assume that we can
directly access the firstName and surname properties.
/**
 * The new, improved, *persistable* PersonImpl class!
 */
public class PersonImpl extends AbstractPObject implements Person {
/*
 * Construct a PersonImpl object.
 */
public PersonImpl(String firstName, String surname) {
this.firstName = firstName;
this.surname = surname;
}

/*
 * Copy the properties of a Person to this object.
 * @param person the Person object to be copied.
 */
public void copy(Person person) {
this.firstName = person.getFirstName();
this.surname = person.getSurname();
setDirty();
}

/*
 * Returns the person's first name.
 * @return the person's first name.
 */
public String getFirstName() {
return this.firstName;
}

/*
 * Sets the person's first name.
 * @param name the person's new first name.
 */
public void setFirstName(String name) {
this.firstName = name;
setDirty();
}

XStore/J Programming Guide 2-5

/*
 * Returns the person's surname.
 * @return the person's surname.
 */
public String getSurname() {
return this.surname;
}

/*
 * Sets the person's surname.
 * @param name the person's new surname.
 */
public void setSurname(String name) {
this.surname = name;
setDirty();
}

private String firstName;
private String surname;
}

Improving Performance
To improve performance, the PersonImpl class could be more judicious about setting the dirty
flag. For example, suppose setFirstName is called with the string “John”. If the value of the
firstName property is already “John”, then there is no need to set the dirty flag causing the
object to be saved to the database. The setFirstName method could be rewritten as follows.

/*
 * Sets the person's first name.
 * @param name the person's new first name.
 */
public void setFirstName(String name) {
if ((firstName != null && !firstName.equals(name))
 || (firstName == null && name != null)) {
firstName = name;
setDirty();
}
}

Implementing PObject
In this example we were able to extend AbstractPObject because Person did not previously
have a base class. Since Java does not support multiple inheritance, any class that already

Class Preparation

2-6 XStore/J Programming Guide

extends a base class will not be able to extend AbstractPObject and must implement PObject.
This can be done by including the following code.
 public boolean isDirty() { return dirty; }
 public void clearDirty() { dirty = false; }
 public void setDirty() { dirty = true; }
 public void post$load() { }
 public transient boolean dirty;

Common Mistakes
The most common mistakes made when creating persistent classes are failing to set the dirty
flag and assuming an object passed as a parameter is an implementation object. If changes to
an object do not appear to be saved to the database after calling PerrsistentContext.commit,
the first thing a programmer should check is if all methods which modify the object set the dirty
flag. The second mistake is often much more difficult to find. If a parameter is a persistent type,
then the object to which it refers will almost certainly be a proxy and not an implementation
object. The safe approach is to always write methods in terms of the interface and never
assume you can directly access the properties of an object.

XStore/J Programming Guide 3-1

CHAPTER 3 Generating Proxy and
Factory Classes

Using the Proxy Generator
Persistent objects are only accessed through a proxy; therefore, a proxy class is required for
each persistent class. XStore provides a tool for generating proxy classes called ProxyGener-
ator. This tool analyzes the implementation class and generates a proxy class with construc-
tors and methods that match the methods of the implementation class. Each proxy method
checks the object cache directory and attempts to load the object if it is not already present in
the cache. Once the object is loaded, the proxy method delegates to the implementation
method. Any value returned by the implementation method is returned by the proxy method. A
proxy constructor creates the implementation object, passing its parameters to the implemen-
tation constructor. It also registers the object with the persistence manager which assigns it an
OID and a slot in the object cache directory.

ProxyGenerator can also generate a factory class for each persistent class. For each imple-
mentation constructor, the factory class will have create and createTransient methods with the
same parameters. While XStore does not require the use of factories, it is the most convenient
way to create a transient object. The createTransient method returns a proxy for a transient
object that resides in the object cache but is not persistent. The application can later make the
object persistent by calling the persist method of PersistenceContext and passing the proxy
for the transient object as a parameter.

Generating Proxy and Factory Classes

3-2 XStore/J Programming Guide

ProxyGenerator is used as follows.
PB=com.xavax.xstore.tools.ProxyGenerator
java $PB package interface implementation proxy [factory]

For example, the following command would create the proxy and factory classes for Spacely
Sprocket Corporation’s Address business object.
java $PB com.yoyodyne Address AddressImpl AddressProxy AddressFactory

Automating Proxy Generation Using Ant
It is usually preferable to generate proxy and factory classes as part of the automated build
process for a project. Here is are example targets from an Ant build.xml file that creates the
proxy and factory classes for Yoyodyne’s business objects.
<property name="ProxyGenerator"

value="com.xavax.xstore.tools.ProxyGenerator"/>

<target name="proxyBuild" description="Build business object proxy">
<java classname="${ProxyGenerator}">
<classpath refid="proxy.path" />
<arg value="${package}"/>
<arg value="${stem}"/>
<arg value="${stem}Impl"/>
<arg value="${stem}Proxy"/>
<arg value="${stem}Factory"/>

</java>
</target>

<target name="proxies" depends="jar,demojar"
description="Build and compile business object proxies">

<antcall target="proxyBuild">
<param name="package" value="com.spacely"/>
<param name="stem" value="Address"/>

</antcall>
<antcall target="proxyBuild">
<param name="package" value="com.spacely"/>
<param name="stem" value="Employee"/>

 </antcall>
<antcall target="proxyBuild">
<param name="package" value="com.spacely"/>
<param name="stem" value="Sprocket"/>

 </antcall>
</target>

XStore/J Programming Guide 3-3

In this example, the proxy.path property would include all class directories and jar files that
are needed to load the implementation classes for Address, Employee, and Spaceship. Proxy-
Generator uses reflection to discover the constructors and methods of the implementation
class so it is necessary that it be able to load the implementation class.

Proxy Implementation
The programmer seldom needs to be concerned with the details of the proxies generated by
XStore/J; however, when stepping through a program using a debugger, it is useful to know
the basic structure of a proxy. Here is a fragment of a proxy class generated for the Person
class described in chapter 2.
final public class PersonProxy extends AbstractProxy implements Person {
public PersonProxy(AccessKey key) {
super(key);
}
...
public PersonProxy(String p0, String p1)
throws PersistenceException
{
super(new PersonImpl(p0, p1));
}

public String getFirstName()
{
return ((Person) $link.access()).getFirstName();
}

public void setFirstName(String p0)
{
((Person) $link.access()).setFirstName(p0);
}
...
public int hashCode()
{
return ((Person) $link.access()).hashCode();
}
...
}

The heart of a proxy is the expression $link.access(). Each proxy inherits a protected
member $link of type Link. A Link is an entry in the object cache directory and provides an
access method which determines if a persistent object is in the object cache and if not, tries

Generating Proxy and Factory Classes

3-4 XStore/J Programming Guide

to load it, then returns the object. Once the object is returned, the proxy proceeds to call a
method of the object.

For each constructor in the implementation class, the proxy class has a constructor with the
same parameters; therefore, the user can simply change Person to PersonProxy in code that
creates Persons. A proxy includes one additional constructor which is only used by XStore.
The need to limit access to this constructor poses a problem. The proxy does not belong to
any XStore package; therefore, we cannot use package level access, and for the same reason
the constructor has to have public access. We solve this problem by using the private interface
design pattern.The constructor has a parameter of type AccessKey. This class is part of the
main XStore package and only has constructors with package level access. Since no class
outside of XStore can create an AccessKey, the proxy constructor can be public but only an
XStore class can call it.

Note that the proxy implements the hashCode method. If this were not the case, it would inherit
the implementation provided by Object which is almost certainly not the desired behavior.
What the application really wants is the hash code of the implementation object and XStore
facilitates this by having the proxy delegate the method to the implementation object. The
method toString is implemented in a similar manner.

The implementation of the equals method provided by the AbstractProxy base class is signifi-
cantly more complicated. Suppose we want to compare a proxy p of class P which refers to
the implementation object pimpl with an object o which could possibly be a proxy for the imple-
mentation object oimpl. The objects p and o are defined to be equal if and only if:

• p and o are the same proxy (p == o), or

• o is assignable to P, that is, o is also a proxy of the same class or a derived class as p, and pimpl and oimpl
are the same object (pimpl == oimpl), or

• the previous condition is met and pimpl.equals(oimpl) returns true, or

• pimpl.equals(o) returns true.

XStore/J Programming Guide 4-1

CHAPTER 4 Generating Metadata

Using the Metadata Generator
Before an object can be persisted, XStore requires metadata that describes how members of
the object are mapped to columns in the database. XStore provides a metadata generator tool
which will analyze the classes to be persisted and generate both the mapping metadata as
well as a suggested database schema. The output of the metadata generator consists of a file
of SQL statements which can easily be edited by the programmer. Here is the command line
syntax for running the metadata generator.
MB=com.xavax.xstore.tools.MetadataGenerator
java ${MB} [-incr] -input inputFilename -output outputFilename

The input file contains a list of class and data source specifications. The format of each data
source specification is as follows.
database name {MSS|MySQL|Oracle} jndi-url

The format of each class specification is as follows.
class packageName interfaceName implementationName proxyName

The metadata generator uses reflection to determine the fields in each class; therefore, it is
necessary for all classes or jar files needed to load the classes listed in the input file be
included in the class path when the metadata generator executes.

Generating Metadata

4-2 XStore/J Programming Guide

Assumptions
The metadata generator makes the following assumptions.

• Each class maps to a table with the same name.

• Each attribute is mapped to a column in the table with the same capitalized name (e.g. age maps to Age).

• Each attribute of a primitive type (e.g. long) or a wrapper type (e.g. Long) is mapped to the most appro-
priate database-specific type.

• Each Date attribute is mapped to a database-specific type (e.g. DATETIME for MSSQL).

• Each String attribute is mapped to a VARCHAR(256).

• Each reference to an object of a persistent type is mapped to a set of three columns which will store the
LOID of the object. The column names are created by concatenating the capitalized name of the member
with the strings DB , Class , and OID (e.g. manager maps to ManagerDB, ManagerClass, and Man-
agerOID).

• Each reference to a collection of objects maps to a new table. The table name is chosen by concatenating
the class name with the member name. For example, if a Person class has a reference to a collection
named addresses, the association table would be called PersonAddresses. This table would have five col-
umns. The first two are named srcOID and sequence. The remaining three names are generated as
described above.

• If a class extends a class that is persistent, the fully normalized persistence strategy is used and a column
named OID is added to the table.

• If inheritance is not used, three columns named databaseID, classID, and OID are added to the table.

Editing the Metadata
The output of the metadata generator is a file of SQL statements. The mappings determined
by the generator can be modified by editing these statements. An interactive metadata editor
tool is also under development.

Incremental Metadata Generation
If the -incr flag is included on the command line, the metadata generator runs in incremental
mode. When running in incremental mode, the generator first loads the existing metadata. For
each class listed in the input file, it determines if the class has existing metadata. If existing
metadata is found, it only generates new metadata for any attributes or associations added to
the class. If a programmer has previously edited the metadata, those changes are preserved.

XStore/J Programming Guide 5-1

CHAPTER 5 Programming with the
XStore/J Framework

Initialization
To begin using XStore a program must first get a PersistenceManager. The most common way
to do this is by calling the static method PersistenceManager.getManager and passing the
name of a properties file located anywhere in your class path.
PersistenceManager pm = PersistenceManager.getManager("DemoApp");

In this example the file DemoApp.properties includes the properties necessary to initialize the
XStore framework. Here is the minimum set of properties required.
java.naming.factory.initial

The factory used to create the initial naming context. If no name server is available, use
com.xavax.xstore.util.InitialContextFactory.

java.naming.provider.url
The URL for JNDI name resolution. This is typically an LDAP server.

com.xavax.xstore.url
The URL for the data source used to get connections to the metadata database.

com.xavax.xstore.poolSize
The size of the pool of persistence contexts. A standalone application will need one per-
sistence context per thread that uses persistence. When XStore is used in a container
environment such as Tomcat or Weblogic, each concurrent thread will need a persistence
context.

Programming with the XStore/J Framework

5-2 XStore/J Programming Guide

Here is a list of properties file that might be used in a typical Weblogic server environment.
java.naming.provider.url: t3://localhost:7001
java.naming.factory.initial: weblogic.jndi.WLInitialContextFactory
com.xavax.xstore.poolSize: 16
com.xavax.xstore.url: metadata

Obtaining a Persistence Context
Once we have a persistence manager, we can use it to obtain a persistence context by calling
PersistenceManager.getContext.
PersistenceContext pctx = pm.getContext();

The persistence context returned by getContext is bound to the current thread, so any persis-
tence activity in the current thread will automatically use this context.

Setting a Default Database
Before we can create objects, we need to specify the default database where the objects will
be persisted. This is done using the PersistenceContext.setDefaultDatabase method.
 pctx.setDefaultDatabase("SS_Test1");

Creating Objects
Persistent objects are created in one of two ways. When a proxy is created, an implementation
object is automatically created and assigned a slot in the object cache directory. If we chose to
create factories, we can also use one of the factory’s create or createTransient methods. Here
is how we might use the proxies and factories created in the chapter 3 to create a new Spacely
Sprockets employee and assign his address.
Employee employee = new EmployeeProxy(“George”, “S”, “Jetson”);
Address address =
 AddressFactory.create(“1 Terrestrial Plaza”, “2201”, “Astoria”,
 “Europa Colony”, “297028-2201”, “Jupiter”);
employee.setAddress(address);
employee.setAge(47);
employee.setSSN(“419-97-8894-3027”);
pctx.commit();

We now have an Employee object with an association to an Address persisted in the database
SS_Test1. If we had called rollback instead of commit, the two objects would not be persisted
and would have been removed from the object cache.

XStore/J Programming Guide 5-3

Locating Persistent Objects
Persistent objects are located using the PersistenceContext.find method or by association.
Before we can use the find method, we must create a Criteria and initialize it with our search
criteria. Here is how we would locate the Employee we just created using the find method and
then locate his Address by association.
Criteria criteria = pctx.createCriteria(“com.spacely.Employee”);
criteria.equal(“surname”, “Jetson”).equal(“firstName”, George);
Collection c = pctx.find(criteria);
if (c.size() > 0) {
employee = (Employee) c.get(0);
 address = employee.getAddress();
}

Assuming the find method returns a collection of at least one Employee, the variable employee
now holds a proxy that the first Employee and address holds a proxy to their Address. When
the program first tries to use address, that object will be loaded into the object cache.

Criteria can be arbitrarily complex. Most Criteria methods return the Criteria itself which is why
we are able to chain the two calls to the equal method in our example. The two search criteria
are logically ANDed. Criteria also supports the logical OR and NOT operations. Here is how
we might create a Criteria to find all employees with a surname beginning with ‘J’ over 40
years old, or, employees with the first name “Elroy” under 40 years old.
criteria.reset();
criteria.like(“surname”, “J%”).greaterEqual(“age”, 40)

.or().equal(“firstName”, “Elroy”).less(“age” 40);

A Criteria is initially configured to search in the current default database. We can search for
objects in another database by calling the Criteria.database method; however, we can only
search in one database with each call to find.

Deleting Persistent Objects
Persistent objects continue to exist in the database after a program no longer refers to them;
therefore, they must be deleted explicitly. PersistenceContext provides methods to delete an
object given its LOID or a proxy for the object. Here is how we could change the address of our
employee and delete the old address, assuming the variable employee still holds a proxy to
the employee.
Address oldAddress = employee.getAddress();
employee.setAddress(newAddress);
pctx.delete(oldAddress);
pctx.commit();

Programming with the XStore/J Framework

5-4 XStore/J Programming Guide

Here is how we would delete all employees with the surname Jetson.
criteria.reset();
criteria.equal(“surname”, “Jetson”);
Collection c = pctx.find(criteria);
pctx.delete(c);

Using Multiple Threads
XStore is thread safe. When multiple threads are used in a program, each thread can create its
own context or one or more threads can share a context. A thread continues to share a context
with its parent until it calls PersistenceManager.getContext to obtain a separate context. Any
persistence activity performed by a thread in a context is isolated from any persistence activity
occurring in other threads in other contexts.

Releasing Resources
A persistence context uses a lot of system resources; therefore, a program should release this
resource when it is no longer needed. This is done by calling PersistenceContext.close. Before
calling close the program should commit any changes; otherwise, the changes are lost as if
the program called rollback. A standalone program should call PersistenceManager.shutdown
to gracefully shut down the persistence framework.

XStore/J Programming Guide 6-1

CHAPTER 6 Understanding XStore
Mapping Metadata

Overview
Metadata is data that describes other data. Metadata is used in XStore to describe how the
data that makes up an object is structured and how that data should be mapped to tables in a
relational database. XStore metadata is also stored in a database although the programmer
can view and edit it in other forms. The purpose of this chapter is to describe the structure of
the metadata and provide the programmer with an understanding of how to modify the meta-
data as necessary to accommodate the specific needs of the object model or map to a specific
database schema.

XStore metadata consists of a hierarchy of mapping objects which represent each class, field,
and association in the object model as well as each database, table, and column in the data
model. The metadata object model is shown in Figure 5 on page 6-2.

PersistenceManager
The PersistenceManager loads the metadata from the database, resolves mapping references
during the initialization of the framework, and provides methods for locating the metadata for a
class, database, or table. The PersistenceManager also manages the sequencers used to
generate unique identifiers for classes, databases, and tables.

Understanding XStore Mapping Metadata

6-2 XStore/J Programming Guide

ClassMap
ClassMap describes the structure of a persistent class. The fields of a ClassMap, as stored in
the table xClasses, are listed in Table 1. When loaded in memory, the names in the table-
Name, kdb, kclass, and koid fields are resolved to references to the appropriate TableMap and
ColumnMap objects. The basename of the interface is used as the name of the class. After the
metadata for associations and attributes is loaded and resolved, each ClassMap is populated
with collections of AssociationMap and AttributeMap objects.

FIGURE 5. XStore Metadata Object Model

TABLE 1. ClassMap Fields

Name Type Description

classID int(16) The class identifier for this class.

parent int(16) The class identifier for the parent class

interface string(128) The fully-qualified interface name.

implementation string(128) The fully-qualified implementation class name.

proxy string(128) The fully-qualified proxy class name.

tableName string(64) The name of the table to which this class is mapped.

kdb string(64) The name of the column holding the database ID.

kclass string(64) The name of the column holding the class ID.

koid string(64) The name of the column holding the object ID.

PersistenceManager

ClassMap

DatabaseMap TableMap ColumnMap

AttributeMap

AssociationMap

1
1

1

1..n

1..n

1..n
0..1 1 1..5

1..n

1..n

1..n

1

1

1

1..n11

XStore/J Programming Guide 6-3

AssociationMap
AssociationMap describes the structure and mapping of an association between one or more
persistent objects. The fields of an AssociationMap, as stored in the table xAssociations, are
shown in Table 2. When loaded in memory, the tableName, sourceOID, sequence, destDB,
destClass, and destOID names are resolved to the appropriate TableMap and ColumnMap
objects. The tableName, sourceOID and sequence fields are only used for 1:n associations.

AttributeMap
AttributeMap describes the mapping of an attribute. The fields of an AttributeMap, as stored in
the table xAttributes, are shown in Table 3. When loaded into memory, columnName is
resolved to a ColumnMap object.

TABLE 2. AssociationMap Fields

Name Type Description

classID int(16) The class identifier.

assocID int(16) The association identifier.

name string(128) The name of the association.

dependant boolean True if the associated object is dependant on the source object.

multiplicity boolean True if this is a 1:n association.

tableName string(128) The name of the table to which this association is mapped.

sourceOID string(64) The name of the column holding the OID of the source object.

sequence string(64) The name of the column holding the sequence number.

destDB string(64) The name of the column holding the database ID of the destination object.

destClass string(64) The name of the column holding the class ID of the destination object.

destOID string(64) The name of the column holding the object ID of the destination object.

TABLE 3. AttributeMap Fields

Name Type Description

classID int(16) The class identifier.

attrID int(16) The attribute identifier.

name string(64) The name of the attribute.

columnName string(64) The name of the column holding the attribute data.

Understanding XStore Mapping Metadata

6-4 XStore/J Programming Guide

TableMap
TableMap describes a table available in one or more databases in a persistence domain. The
fields of a TableMap, as stored in the table xTables, are shown in Table 4. After the metadata
for columns is loaded, each TableMap is populated with a collection of ColumnMap objects.

ColumnMap
ColumnMap describes a column in a table. The fields of a ColumnMap, as stored in the xCol-
umns table, are shown in Table 5.

DatabaseMap
DatabaseMap describes a database in a persistence domain. The fields of a DatabaseMap, as
stored in the xDatabases table, are shown in Table 6.

TABLE 4. TableMap Fields

Name Type Description

tableID int(16) The table identifier.

name string(128) The table name.

TABLE 5. ColumnMap Fields

Name Type Description

tableID int(16) The table identifier.

columnID int(16) The column identifier.

name string(64) The name of the column.

type int(8) The SQL type of the column (see Table 9 on page 6-5).

width int(32) The width of the column.

precision int(8) The precision of the column.

TABLE 6. DatabaseMap Fields

Name Type Description

dbID int(16) The database identifier.

name string(32) The database name.

url string(255) The URL for finding the data source.

style string(16) The locking style to use with this database.

XStore/J Programming Guide 6-5

DatabaseTables
DatabaseTables is a cross-reference table used to map tables to databases. The fields of
DatabaseTables, as stored in the table xDatabaseTables, are shown in Table 7.

Sequences
Sequences are objects used to generate unique identifiers. The fields of a sequence, as
stored in the xSequences table, are shown in Table 8.

SQLTypes
SQLTypes is a cross-reference table mapping SQL type numbers used internally by XStore to
SQL type names. The list of SQL type numbers is shown in Table 9.

TABLE 7. DatabaseTables Fields

Name Type Description

dbID int(16) The database identifier.

tableID int(16) The table identifier.

TABLE 8. Sequence Fields

Name Type Description

seqID int(16) The sequence identifier.

name string(32) The sequence name.

sequence int(64) The next available sequence value.

stride int(16) The number of identifiers to allocate per request.

TABLE 9. SQLTypes

Type Name Type Name Type Name

1 ARRAY 8 CLOB 15 NULL

2 BIGTINT 9 DATE 17 SMALLINT

3 BINARY 10 DOUBLE 18 TIME

4 BIT 11 FLOAT 19 TIMESTAMP

5 BLOB 12 INTEGER 20 TINYINT

6 BOOLEAN 13 LONGVARBINARY 21 VARBINARY

7 CHAR 14 LONGVARCHAR 22 VARCHAR

Understanding XStore Mapping Metadata

6-6 XStore/J Programming Guide

Editing Metadata
The metadata generator produces metadata in the form of SQL statements which can be
edited by the programmer. The most common reason to edit the metadata is to adapt to a dif-
ferent database schema. This is easily accommodated by editing the database, table, and col-
umn names appearing in the SQL statements. Errors in the metadata are difficult to diagnose
and place data integrity at risk; therefore, the following precautions should be observed.

• Avoid making changes to metadata after a persistence environment begins operation.

• Avoid making changes to metadata of a persistence environment when one or more appli-
cations which use that environment are operating. This could result in applications using
different metadata.

• Avoid changing numeric identifiers appearing in the metadata.

• Never change the value of a sequencer (the sequence column) after a system begins opera-
tion. Changing the sequencer value could result in two or more classes or objects having
the same identifier.

Running the metadata generator in incremental mode after editing the metadata will catch
some editing mistakes. See “Incremental Metadata Generation” on page 4-2 for more informa-
tion about incremental mode.

XStore/J Programming Guide 99-1

CHAPTER 99 Planned Enhancements

Cache Performance
XStore currently uses a pessimistic caching strategy that assumes other applications in the
environment can concurrently modify the database. Currently the object cache is part of the
persistence context, so one context may load an object that is already in the cache of another
context. After a commit or rollback, all objects are removed from the cache. A future version of
XStore will implement a two-level cache strategy by adding a level 2 (L2) shared cache to the
persistence manager while the persistence context will implement a level 1 (L1) non-shared
write-back cache. When attempting to load an object, the persistence context will first check
this L2 cache. If a hit occurs, it will simply refer to the object in the L2 cache. If a miss occurs,
the object will be loaded into the L2 cache and the L1 cache. During a commit, any modified
objects in the L1 cache are written back to the L2 cache and also persisted in the database.

Smart Containers
XStore currently supports using any container that implements the Collection interface to store
associations. If an object is marked as modified in the object cache directory, the associations
might have been modified so XStore deletes the old collection of associations from the data-
base and saves the current collection. A smart container could improve performance by track-
ing exactly which elements of the collection were added or deleted and performing only the
minimum set of database operations needed to update the collection.

Planned Enhancements

99-2 XStore/J Programming Guide

Smart containers could also allow lazy loading of an association. Currently, XStore loads an
object and all of its associations (but not the associated objects) on demand. This requires
accessing one or more tables to load the object and one table for each 1:n association. When
using a smart container, the OID of the parent object could be saved by the container and the
contents would only be loaded when the program actually tried to use the container.

Association Table Reuse
XStore currently requires one table for each 1:n association. This can result in many similar
tables. For example, a program managing a car rental company might need to associate each
Location with a list of cars available, cars on lease, and cars undergoing maintenance. There
are three 1:n associations so XStore uses three tables; however, each is an association from a
Location to a Car. The association table currently includes the source LOID, destination LOID,
and a sequence number. By adding an additional field which indicates to which association a
row belongs, all three associations could be persisted in the same table.

Automatic Optimistic Locking
Keeping database rows or tables locked during long transactions can severely impact the per-
formance of some applications. One solution to this problem is optimistic locking. When using
optimistic locking, the rows or tables involved in a transaction are not actually locked but the
version number or timestamp of each object is saved when the transaction begins. When the
program attempts to update the object during a commit, it compares the current version with
the saved version and throws an optimistic locking exception if the two versions are not the
same. A future version of XStore will automate this process by adding an additional version
number field to the tables used to persist each class that is configured to use optimistic lock-
ing. This version number will be saved in the object cache directory when the object is loaded.
When the transaction is committed, XStore will generate an update statement that both checks
and increments the version number.

Object Migration
As databases grow and requirements change, it may be necessary to rearrange the mapping
of classes to databases. For example, as a business grows the number of Customer objects
grow with it and eventually it may be necessary to assign an additional database server to
store Customer objects. An alternative scenario might be consolidating objects from two exist-
ing servers onto a single, higher performance server.

While it is a simple matter to find a set of Customer objects and copy them to another data-
base, we are left with two problems: identity preservation and dangling associations. A user
program could simply delete a Customer from one database and create it in another; however,

XStore/J Programming Guide 99-3

that would result in a Customer with a different OID. The OID of an object should be immuta-
ble; therefore, it is necessary that the persistence framework provide a mechanism to migrate
an object while preserving the OID.

After the object has migrated to its new home, any associations to this object are now broken
or dangling since they still use a LOID containing the old database ID. Examining every object
in an persistence domain that could possibly have an association to the objects being migrated
is a formidable task that is further complicated by the fact that XStore supports inheritance and
polymorphism. This task might occupy a significant portion of server resources possibly requir-
ing any applications using the persistence domain to be shut down.

A future version of the XStore object loader will exploit the LOID structure to implement lazy
migration. When an object migrates to another database, a forwarding object will be left in the
old location with a LOID containing the new database ID. When the object is loaded, the loader
will recognize that the database ID in the LOID does not match the ID of the database from
whence it was loaded. The object will then be loaded from its new location and the source of
the association will be marked as dirty. When the transaction is committed, the source object
will be saved with an association to the new LOID of the migrated object. At some point all bro-
ken associations will be repaired; however, to assure this, a background scrubber task can
search for and broken associations. XStore’s implementation of lazy migration will make it pos-
sible for a persistence domain to operate “24x7” even during major database reorganization.

Schema Evolution
As an application ages, the classes that make up the application often evolve by adding or
deleting fields and associations; therefore, the database schema must evolve with it. This is
problematic in a “24x7” environment as there may never be a maintenance window long
enough to allow all objects to be migrated to the new schema. A future version of XStore will
solve this problem by implementing lazy schema evolution. The existing LOID and metadata
structures will be extended adding a schema version number (SVN). When an object is loaded
into cache, XStore will compare the object’s SVN with the latest SVN for the class. If the object
uses an old schema, it will be marked dirty and XStore will attempt to evolve the object. In
most cases this can be accomplished by setting new fields to default values and deleting old
fields. In cases where a class changes radically or there is no default value, it may be neces-
sary for the class to intervene. This will be accomplished using the post$load method which is
already included in the PObject interface. When the transaction is committed, the object will be
saved to the database with the new SVN. As with lazy object migration, a scrubber task can
use idle system time to iterate over each instance of a class.

Planned Enhancements

99-4 XStore/J Programming Guide

Annotations
XStore currently works with JDK 1.4 or 1.5; however, it does not use any features introduced
in JDK 1.5. One of the more interesting new features is annotations. An annotation is meta-
data about a class, method, or field that is included in the class file when a class is compiled.
The new Java Persistence API defines a set of annotations for encoding metadata about how
an object should be persisted. A future version of XStore will use these standard annotations
to affect the output of the metadata generator. For example, the metadata generator currently
defaults to mapping a field to a column of the same name. With annotations, the programmer
can provide the metadata generator with an alternative column name. It is important to note
that the persistence domain administrator can still edit the metadata and override this name.
This allows a program using XStore to adapt to different database schemas without having to
ship the source code of the program.

EJB 3.0
The latest specification for Enterprise Java Beans (EJBs) supports the use of third party per-
sistence solutions which integrate with the EJB container. A future version of XStore will pro-
vide the necessary interfaces to be used as an EJB 3.0 persistence solution.

